Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 328: 121643, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37062404

RESUMO

The leaching of microplastics (MPs) additives and their negative effects on aquatic organisms remain to be systematically elucidated. In this study, the toxicological effects of MPs leachate (micro-sized polyethylene (mPE) and micro-sized polyvinyl chloride (mPVC) acceleratedly leached by UVA for 15, 90, and 180 days in seawater) on microalga Chlorella vulgaris in terms of cell growth inhibition, oxidative stress, and transcriptomes were investigated. The leachate components of MPs aged for 90 days were further identified to elucidate the corresponding toxicity mechanisms of MPs on microalgal cells. The results revealed that both leachates of mPE and mPVC inhibited cell growth and increased oxidative stress in C. vulgaris, accompanied by a growth inhibition rate to microalgal cells of 4.0%-36.2% and 7.1%-48.2%, respectively. At the same mass concentration, the toxicological effects on C. vulgaris followed the order of mPVC leachate > mPE > mPE leachate > mPVC, whereas MPs leaching time indicated no change in MPs leaching toxicity. Furthermore, the gene functions of "translation, ribosomal structure and biogenesis" were mostly affected by MPs leachate. Compared to mPE leachate and pure MPs, the stronger inhibitory effects of mPVC leachate on microalgal cells may be attributed to the fact that more substances were leached from the polymer of mPVC, including Zn, farnesol isomer a, 2,6-di-tert-butyl-4-methylphenol, and acetyl castor oil methyl ester. In summary, this study provides a better understanding of the ecotoxicological influences of MPs and MPs leachate, and offers a warning on the ecological risk caused by plastic additives.


Assuntos
Chlorella vulgaris , Microplásticos , Poluentes Químicos da Água , Proliferação de Células , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/fisiologia , Microalgas , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
2.
PLoS One ; 16(8): e0255996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370788

RESUMO

Recent advances in microalgae biotechnology have proven that these microorganisms contain a number of bioactive molecules, that can be used as food additives that help prevent disease. The green microalga Chlorella vulgaris presents several biomolecules, such as lutein and astaxanthin, with antioxidant capacity, which can play a protective role in tissues. In this study, we produced and analyzed a C. vulgaris functional alcoholic beverage (produced using a traditional Brazilian alcoholic beverage, cachaça, and C. vulgaris biomass). Assays were conducted in vitro by radical scavenging tests, and in vivo, by modeling cortical spreading depression in rat brains. Scavenging radical assays showed that consumption of the C. vulgaris alcoholic beverage had a DPPH inhibition of 77.2%. This functional alcoholic beverage at a concentration of 12.5 g L-1 significantly improved cortical spreading depression velocity in the rat brains (2.89 mm min-1), when compared with cachaça alone (3.68 mm min-1) and control (distilled water; 3.25 mm min-1). Moreover, animals that consumed the functional beverage gained less weight than those that consumed just alcohol and the control groups. These findings suggest that the C. vulgaris functional alcoholic beverage plays a protective physiologic role in protecting brain cells from the effects of drinking ethanol.


Assuntos
Bebidas Alcoólicas/análise , Antioxidantes/farmacologia , Peso Corporal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Chlorella vulgaris/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Animais , Brasil , Masculino , Ratos , Ratos Wistar
3.
Ecotoxicol Environ Saf ; 221: 112468, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34198191

RESUMO

The study shows how microalgae biofilm formation and antioxidant responses to the production of reactive oxygen species (ROS) is alter by the presences of Lemna minor L., Chlorella vulgaris, and Aphanizomenon flos-aquae. The study involves the cultivation of the biofilm of Chlorella vulgaris and Aphanizomenon flos-aquae in three bioreactors. The condition of growth for the biofilm formation was varied across the three bioreactors to enable the dominance Chlorella vulgaris and Aphanizomenon flos-aquae in one of the bioreactors. Lemna minor L. was also introduce into one of the bioreactors to determine its effect on the biofilm formation. The result obtained shows that C. vulgaris and A. flos-aquae dominate the biofilm, resulting in a high level of H2O2 and O2- (H2O2 was 0.122 ± 0.052 and 0.183 ± 0.108 mmol/L in C. vulgaris and A. flos-aquae, respectively, and O2- was 0.261 ± 0.039 and 0.251 ± 0.148 mmol/L in C. vulgaris and A. flos-aquae, respectively). The study also revealed that the presence of L. minor L. tend to reduce the oxidative stress to the biofilm leading to low production of ROS (H2O2 was 0.086 ± 0.027 and 0.089 ± 0.045 mmol/L in C. vulgaris and A. flos-aquae respectively, and O2- was 0.185 ± 0.044 and 0.161 ± 0.065 mmol/L in C. vulgaris and A. flos-aquae respectively). The variation in the ability of the biofilm of C. vulgaris and A. flos-aquae to respond via chlorophyll, carotenoid, flavonoid, anthocyanin, superoxide dismutase, peroxidase, catalase, glutathione reductase activities, antioxidant reducing power, phosphomolybdate activity, DPPH reduction activity, H2O2 scavenging activity, lipid content and organic carbon also supports the fact that the presence of biomass of microalgae and aquatic macrophytes tend to affect the process of microalgae biofilm formation and the ability of the biofilm to produce antioxidant. This high nutrient utilization leads to the production of biomass which can be used for biofuel production and other biotechnological products.


Assuntos
Aphanizomenon/fisiologia , Araceae/fisiologia , Biofilmes , Chlorella vulgaris/fisiologia , Microalgas/fisiologia , Antioxidantes/farmacologia , Biofilmes/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio
4.
Sci Rep ; 11(1): 6779, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762646

RESUMO

Supplementing cultivation media with exogenous carbon sources enhances biomass and lipid production in microalgae. Utilization of renewable organic carbon from agricultural residues can potentially reduce the cost of algae cultivation, while enhancing sustainability. In the present investigation a medium was developed from sweet sorghum bagasse for cultivation of Chlorella under mixotrophic conditions. Using response surface methodology, the optimal values of critical process parameters were determined, namely inoculum cell density (O.D.750) of 0.786, SSB hydrolysate content of the medium 25% v/v, and zero medium salinity, to achieve maximum lipid productivity of 120 mg/L/d. Enhanced biomass (3.44 g/L) and lipid content (40% of dry cell weight) were observed when the alga was cultivated in SSB hydrolysate under mixotrophic conditions compared to heterotrophic and photoautotrophic conditions. A time course investigation revealed distinct physiological responses in terms of cellular growth and biochemical composition of C. vulgaris cultivated in the various trophic modes. The determined carbohydrate and lipid profiles indicate that sugar addition to the cultivation medium boosts neutral lipid synthesis compared to structural lipids, suggesting that carbon flux is channeled towards triacylglycerol synthesis in the cells. Furthermore, the fatty acid profile of lipids extracted from mixotrophically grown cultures contained more saturated and monosaturated fatty acids, which are suitable for biofuel manufacturing. Scale-up studies in a photobioreactor using SSB hydrolysate achieved a biomass concentration of 2.83 g/L consisting of 34% lipids and 26% carbohydrates. These results confirmed that SSB hydrolysate is a promising feedstock for mixotrophic cultivation of Chlorella and synthesis of algal bioproducts and biofuels.


Assuntos
Biomassa , Chlorella vulgaris/fisiologia , Lipídeos/biossíntese , Microalgas/crescimento & desenvolvimento , Fenômenos Fisiológicos Vegetais , Ingestão de Alimentos , Concentração de Íons de Hidrogênio , Fotossíntese , Pigmentos Biológicos/biossíntese , Açúcares/metabolismo
5.
J Plant Physiol ; 258-259: 153392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33636555

RESUMO

Oxygen evolution and chlorophyll fluorescence kinetics in cells of the Chlorella vulgaris strain (Europolytest, Russia) were studied under low, moderate and high photosynthetic photon flux densities (PPFD 40, 130 and 350 µmol photons m-2 s-1) of the red and blue actinic light. A novel method of a pulse amplitude modulated (PAM) Fourier chlorophyll fluorometry was applied to obtain photoinduction curves simultaneously for the red and blue measuring light for one sample. It was found that the red light did not induce oxygen evolution at low and moderate PPFD, whereas at high PPFD it caused a declining oxygen release. There was only a trace fluorescence kinetics at the low PPFD, but noticeable fluorescence kinetics under the red light was observed at the low and moderate PPFD. Particularly, the moderate red illumination of Chlorella cells excited a high chlorophyll fluorescence kinetics along with the absence of oxygen evolution that suggests anoxygenic photosynthesis. In contrast, the blue light induced a significant oxygen evolution as well as fluorescence kinetics already at low PPFD which were both further increased with the PPFD increasing. In addition, a high value of the chromatic divergence of quantum yield of photosystem II was revealed between the red and blue measuring light under high PPFD of the red actinic light.


Assuntos
Chlorella vulgaris/fisiologia , Clorofila/fisiologia , Fluorescência , Luz , Oxigênio/metabolismo , Fotossíntese , Cinética
6.
Chemosphere ; 262: 128422, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182085

RESUMO

This study evaluated the toxicity of Cr(VI) to microalgae Chlorella vulgaris, and its removal by continuous microalgae cultivation in membrane photobioreactor (MPBR). Batch cultivation in photobioreactors showed that low concentration of Cr(VI) (0.5 and 1.0 mg L-1) stimulated the growth of C. vulgaris, while 2.0 and 5.0 mg L-1 Cr(VI) in the wastewater significantly inhibited the growth of C. vulgaris. Superoxide dismutase and catalase activities that represented cellular antioxidant capacity significantly increased at 0.5 and 1.0 mg L-1 Cr(VI), and then gradually decreased with the continuous increase of Cr(VI) concentration. The content of malondialdehyde, which represents the degree of cellular oxidative damage, increased with the increase of Cr(VI) concentration and reached the peak value at 2.0 mg L-1 Cr(VI). C. vulgaris was then cultured in MPBR equipped with hollow-fiber ultrafiltration membrane module to achieve continuous removal of Cr from wastewater. With the in-situ solid-liquid separation function of the membrane module, solid retention time (SRT) and hydraulic retention time (HRT) of the reactor could be controlled separately. Experimental results showed that both SRT and HRT had significant effects on the algal biomass production and pollutants removal. During the continuous operation, MPBR achieved a maximum total Cr reduction of 50.0% at HRT of 3-day and SRT of 40-day, and a maximum volumetric removal rate of total Cr of 0.21 mg L-1 d-1 at HRT of 2-day and SRT of 40-day.


Assuntos
Chlorella vulgaris/fisiologia , Cromo/toxicidade , Fotobiorreatores , Eliminação de Resíduos Líquidos , Biomassa , Chlorella vulgaris/crescimento & desenvolvimento , Cromo/análise , Estudos Longitudinais , Membranas Artificiais , Microalgas/crescimento & desenvolvimento , Oxirredução , Águas Residuárias
7.
Bull Environ Contam Toxicol ; 105(3): 358-365, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32740748

RESUMO

Sulfamethoxazole (SMZ) is a kind of sulfonamides antibiotic, which is widely used in human life. This study investigated the effects of SMZ on physiological and biochemical indexes of Chlorella vulgaris (C. vulgaris) and Microcystis aeruginosa (M. aeruginosa) for 35-day. The results showed that SMZ inhibited the growth and Chl-a content of C. vulgaris and M. aeruginosa, and growth inhibition rate was 8.06%-95.86%, Chl-a content decreased 2.44%-98.04%. SMZ resulting in increased SOD and CAT activity and destroyed the dynamic balance of antioxidant system. In addition, SMZ increased the content of malondialdehyde (MDA) in algae, destroyed the cell membrane to a certain extent, which was 1.8-7.3 folds higher than the control group. High concentration of SMZ can make algae cells exceed the limit of cell antioxidant capacity. Coupled with the serious damage of cell membrane, algae cells begin to appear a large number of death phenomenon.


Assuntos
Antibacterianos/toxicidade , Chlorella vulgaris/fisiologia , Microcystis/fisiologia , Sulfametoxazol/toxicidade , Antioxidantes/metabolismo , Chlorella vulgaris/efeitos dos fármacos , Malondialdeído/metabolismo , Microcystis/efeitos dos fármacos , Sulfametoxazol/metabolismo
8.
Pol J Microbiol ; 69: 1-4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32468805

RESUMO

Microalgae application in agriculture is an alternative measure that could be highly beneficial to plants. The application of microalgae Chlorella vulgaris S45 and its effect on plant growth and pigment content in Swiss chard were investigated. In the treatments, 5% and 10% algal suspensions were applied by spraying on plants and in soil, respectively. C. vulgaris S45 affected the initial growth of Swiss chard and the content of photosynthetic pigments positively. The correlation analysis proved the existence of statistically significant interdependency between chlorophyll a (Chl a) content and leaf number (r = 0.876 at p < 0.05), and chlorophyll b (Chl b) content and fresh leaf weight (r = 0.783 at p < 0.05).Microalgae application in agriculture is an alternative measure that could be highly beneficial to plants. The application of microalgae Chlorella vulgaris S45 and its effect on plant growth and pigment content in Swiss chard were investigated. In the treatments, 5% and 10% algal suspensions were applied by spraying on plants and in soil, respectively. C. vulgaris S45 affected the initial growth of Swiss chard and the content of photosynthetic pigments positively. The correlation analysis proved the existence of statistically significant interdependency between chlorophyll a (Chl a) content and leaf number (r = 0.876 at p < 0.05), and chlorophyll b (Chl b) content and fresh leaf weight (r = 0.783 at p < 0.05).


Assuntos
Agricultura/métodos , Beta vulgaris/fisiologia , Chlorella vulgaris/fisiologia , Clorofila A/metabolismo , Clorofila/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Simbiose
9.
Chemosphere ; 252: 126566, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32222521

RESUMO

The effects of different concentrations of graphene oxide (GO) on intracellular metabolism in Chlorella vulgaris (C. vulgaris) and removal of nitrogen and phosphorus nutrients by C. vulgaris from synthetic wastewater were studied. The results demonstrated that cell division of Chlorella vulgaris increased at 24 h and decreased at 96 h after exposure to different concentrations of GO. The removal rates of total nitrogen (TN), ammoniacal nitrogen (NH3-N), phosphate (PO43--P), and chemical oxygen demand (COD) were 24.1%, 70.0%, 37.0%, and 39.6%, respectively, when the concentration of GO was 0.01 mg/L 10 mg/L GO induced severe plasmolysis and cytoplasmic contraction. Furthermore, the protein-like exopolysaccharide (EPS) content of algal cells exposed to 10 mg/L GO decrease to 10.8% of the control group. Simultaneously, the reactive oxygen species (ROS) level was 175.4% of control group. The biological responses to 10 mg/L GO included increase in ROS level, inhibition of saccharide metabolism, and degradation of amino acids. In addition, high concentrations of 10 mg/L GO weakened the carbon fixation process in algal cells. These stress-response behaviors increased cell permeability and oxidative stress. Overall, these findings provide new insights regarding the effects of GO on algal cellular stress responses.


Assuntos
Chlorella vulgaris/fisiologia , Grafite/química , Ciclo do Carbono , Chlorella vulgaris/metabolismo , Nitrogênio/análise , Nutrientes , Fosfatos/metabolismo , Fósforo/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
10.
Chemosphere ; 248: 125955, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32028155

RESUMO

The studied hypothesis is that glyphosate (GLY) can affect the oxidative balance in the hydrophilic intracellular medium in non-target Chlorella vulgaris cells. Analytical GLY (5 µM) and a commercial product (RUP) (5 µM) supplementation, did not affect the growth profile. Neither in latent (Lag) nor in exponential (Exp) phase of development, there were significant differences in the cellular abundance, evaluated as cell number, after the supplementation with GLY or RUP. The ascorbyl (A•) content was significantly increased in the presence of GLY or RUP, in Lag and Exp phase of growth. No changes were observed in stationary (St) phase after supplementation with either GLY or RUP. Ascorbate (AH-) content was decreased by 30% in Exp phase of development the presence of RUP. In St phase of the development both, the administration of either GLY or RUP decreased the antioxidant content by 34 and 37%, respectively. The supplementation with GLY and RUP lead to a significant 5- and 10-fold increase in Exp phase, respectively in the A•/AH-content ratio, assessed as a damage/protection ratio in the hydrophilic fraction of the cells, as compared to controls. Neither GLY nor RUP affected the ratio in cells in St phase of development. The data presented here showed experimental evidence that suggested that oxidative balance in the hydrophilic environment is affected by GLY, even at the low to medium concentrations currently used. The effect seems as reversible either because of the magnitude of the herbicide-dependent damage or the antioxidant activity activated.


Assuntos
Chlorella vulgaris/efeitos dos fármacos , Glicina/análogos & derivados , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes , Ácido Ascórbico , Chlorella vulgaris/fisiologia , Glicina/toxicidade , Herbicidas/toxicidade , Oxirredução , Estresse Oxidativo
11.
Environ Sci Pollut Res Int ; 27(1): 111-117, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31037532

RESUMO

Wastewater rich in organic carbon, nitrogen and phosphorus may serve as a convenient source of carbon and nutrients for a year-long microalgae production. Scientific reports indicate that some single-cell microalgae such as Chlorella and Scenedesmus, are highly tolerant to wastewater environments and efficiently remove biogenic compounds. The aim of this study was to determine the possibility of using the effluent produced in the process of anaerobic degradation of whey as a culture medium for the multiplication of Chlorella vulgaris algae biomass and to characterise their growth efficiency and rate. The content of nitrogen and phosphorus in wastewater was sufficient for conducting an effective culture of algae. The efficiency of nitrogen removal in the flow system was 15.61 ± 1.38 mg N/dm3/day.


Assuntos
Chlorella vulgaris/fisiologia , Eliminação de Resíduos Líquidos/métodos , Biomassa , Chlorella vulgaris/metabolismo , Fermentação , Microalgas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fósforo/metabolismo , Scenedesmus/metabolismo , Águas Residuárias
12.
Sci Total Environ ; 702: 134995, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710849

RESUMO

Flocculants are foreign particles that aggregate suspended microalgae cells and due to cost factor and toxicity, harvesting of microalgae biomass has shifted towards the use of bioflocculants. In this study, mild acid-extracted bioflocculants from waste chicken's eggshell and clam shell were used to harvest Chlorella vulgaris that was cultivated using chicken compost as nutrient source. It was found that a maximum of 99% flocculation efficiency can be attained at pH medium of 9.8 using 60 mg/L of hydrochloric acid-extracted chicken's eggshell bioflocculant at 50 °C of reaction temperature. On the other hand, 80 mg/L of hydrochloric acid-extracted clam shell bioflocculant was sufficient to recover C. vulgaris biomass at pH 9.8 and optimum temperature of 40 °C. The bioflocculants and bioflocs were characterized using microscopic, zeta potential, XRD, AAS and FT-IR analysis. The result revealed that calcium ions in the bioflocculants are the main contributor towards the flocculation of C. vulgaris, employing charge neutralization and sweeping as possible flocculation mechanisms. The kinetic parameters were best fitted pseudo-second order which resulted in R2 of 0.99 under optimal flocculation temperature. The results herein, disclosed the applicability of shell waste-derived bioflocculants for up-scaled microalgae harvesting for biodiesel production.


Assuntos
Biocombustíveis , Chlorella vulgaris/fisiologia , Floculação , Aquicultura , Biomassa , Íons , Cinética , Microalgas , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
13.
Nature ; 577(7789): 226-230, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853064

RESUMO

Predator-prey cycles rank among the most fundamental concepts in ecology, are predicted by the simplest ecological models and enable, theoretically, the indefinite persistence of predator and prey1-4. However, it remains an open question for how long cyclic dynamics can be self-sustained in real communities. Field observations have been restricted to a few cycle periods5-8 and experimental studies indicate that oscillations may be short-lived without external stabilizing factors9-19. Here we performed microcosm experiments with a planktonic predator-prey system and repeatedly observed oscillatory time series of unprecedented length that persisted for up to around 50 cycles or approximately 300 predator generations. The dominant type of dynamics was characterized by regular, coherent oscillations with a nearly constant predator-prey phase difference. Despite constant experimental conditions, we also observed shorter episodes of irregular, non-coherent oscillations without any significant phase relationship. However, the predator-prey system showed a strong tendency to return to the dominant dynamical regime with a defined phase relationship. A mathematical model suggests that stochasticity is probably responsible for the reversible shift from coherent to non-coherent oscillations, a notion that was supported by experiments with external forcing by pulsed nutrient supply. Our findings empirically demonstrate the potential for infinite persistence of predator and prey populations in a cyclic dynamic regime that shows resilience in the presence of stochastic events.


Assuntos
Clorófitas/fisiologia , Cadeia Alimentar , Modelos Biológicos , Rotíferos/fisiologia , Animais , Biota , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/fisiologia , Clorófitas/crescimento & desenvolvimento , Rotíferos/crescimento & desenvolvimento
14.
Environ Monit Assess ; 191(11): 679, 2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655913

RESUMO

Algal treatment methods have been widely used in nutrient removal studies. However, in most cases, the experimental conditions have not been fully complied with actual conditions. For instance, the effect of algae acclimation to wastewater medium on cell growth and removal efficiency has generally been ignored in laboratory scale experiments. This paper investigates the effect of acclimation on cell growth and nutrient uptake rates of Arthrospira platensis and Chlorella vulgaris. For this purpose, batch reactors, which contained the synthetic secondary effluent, had been inoculated by acclimated algae cells and the growth parameters were measured daily, as well as nutrient concentration. A significant decrease (P < 0.05) in chlorophyll-a content of acclimated A. platensis was observed, although there was no significant change in specific growth rate (µ) and doubling time (dt), in comparison with the non-acclimated ones. Moreover, the acclimation process changed the chlorophyll-a content and kinetic parameters of Chlorella vulgaris. Furthermore, t test results showed a significant increase in removal rate of nitrogen compounds through the acclimation. Residence time of A. platensis and C. vulgaris was also reduced through the acclimation by approximately 50% and 25%, respectively.


Assuntos
Chlorella vulgaris/fisiologia , Eliminação de Resíduos Líquidos/métodos , Aclimatação , Chlorella vulgaris/crescimento & desenvolvimento , Clorofila/análogos & derivados , Monitoramento Ambiental , Cinética , Nitrogênio/análise , Nutrientes , Fósforo/análise , Spirulina/fisiologia , Águas Residuárias
15.
J Microbiol Biotechnol ; 29(6): 952-961, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31154744

RESUMO

Chlorella spp. are green algae that are found across wide-ranging habitats from deserts to arctic regions, with various strains having adapted to survive under diverse environmental conditions. In this study, two novel Chlorella strains (ABC-002, ABC-008) were isolated from a freshwater lake in South Korea during the winter season and examined for possible use in the biofuel production process. The comparison of ABC-002 and ABC-008 strains with Chlorella vulgaris UTEX265 under two different temperatures (10°C, 25°C) revealed their cold-tolerant phenotypes as well as high biomass yields. The maximum quantum yields of UTEX25, ABC- 002, and ABC-008 at 10°C were 0.5594, 0.6747, and 0.7150, respectively, providing evidence of the relatively higher cold-resistance capabilities of these two strains. Furthermore, both the biomass yields and lipid content of the two novel strains were found to be higher than those of UTEX265; the overall lipid productivities of ABC-002 and ABC-008 were 1.7 ~ 2.8 fold and 1.6 ~ 4.2 fold higher compared to that of UTEX265, respectively. Thus, the high biomass and lipid productivity over a wide range of temperatures indicate that C. vulgaris ABC-002 and ABC-008 are promising candidates for applications in biofuel productions via outdoor biomass cultivation.


Assuntos
Aclimatação/fisiologia , Biocombustíveis , Chlorella vulgaris/classificação , Chlorella vulgaris/fisiologia , Temperatura Baixa , Metabolismo dos Lipídeos , Microbiologia da Água , Biomassa , DNA de Algas/genética , Ácidos Graxos/química , Lipídeos/biossíntese , Lipídeos/química , Filogenia , RNA Ribossômico 18S/genética , República da Coreia , Especificidade da Espécie
16.
Environ Monit Assess ; 191(6): 399, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31134347

RESUMO

In South America, Colombia is known as an important oil-producing country. However, the environmental impact of crude oil industry has not been studied deeply and few studies have been carried out for evaluating responses of algae and its adaptation under specific conditions. Enzymatic and physiological effects in Chlorella vulgaris and its potential for bioremediation after exposure to produced water (PW) were assessed using different PW concentrations (0, 25, 50, 75 and 100%) and crude oil. Variables such as cell density, growth rate (µ), percentage of growth inhibition (% I), chlorophyll a and b and cell diameter were evaluated during 5 days. Furthermore, enzymatic biomarkers such as superoxide dismutase (SOD) and catalase (CAT) were also measured. Results showed that the treatment with 100% PW had the highest cell density and µ; similarly, 25% PW treatment had a similar behaviour, being these two treatments with the highest growth. A dose-dependent response was seen for chlorophyll a and b and cell diameter, showing significant differences between treatments and the control. Different levels of SOD and CAT were observed in algae exposed to PW. At 24 h, an increase in SOD and CAT activity was observed, probably due to effects caused by xenobiotics. After 72 h, a decrease in the activity of both enzymes was observed. The results evidenced that C. vulgaris can adapt easily to PW, showing an increase on its growth and stabilisation in its antioxidant activity. Additionally, cell diameter results and decrease of hydrocarbons and phenols show the potential of these algae to degrade xenobiotics from PW.


Assuntos
Chlorella vulgaris/fisiologia , Petróleo/metabolismo , Poluentes Químicos da Água/metabolismo , Água/química , Biodegradação Ambiental , Catalase/metabolismo , Chlorella vulgaris/enzimologia , Clorofila/metabolismo , Clorofila A/metabolismo , Colômbia , Monitoramento Ambiental , Oxirredução , Fenóis/metabolismo , Superóxido Dismutase/metabolismo
17.
PLoS One ; 14(3): e0213370, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30861041

RESUMO

Algicidal bacteria have received broad acceptance as an ecofriendly tool for controlling harmful algal blooms. However, their practical application is still limited to the lab-scale tests due to the complex alga-bacterium interactions in different nutrient statuses. In this study, the Aeromonas sp. L23 that exhibit relatively wide-spectrum in algicidal activity was isolated from a eutrophic agricultural lake. The physiological response of cyanobacteria and green to the algicidal activity under varied nutritional status were studied in an alga-bacterial co-culture. The algicidal activities of L23 against Microcystis aeruginosa UTEX LB 2385, Microcystis aeruginosa NHSB, Anabaena variabilis AG10064, Scenedesmus quadricauda AG10003, and Chlorella vulgaris AG10034 were 88 ± 1.2%, 94 ± 2.6%, 93 ± 0.5%, 82 ± 1.1%, and 47 ± 0.9%, respectively. The L23 cells had low algicidal activity in cell pellet (3%-9%) compared with the cell-free supernatant (78%-93%), indicating that the activity is induced by extracellular substances. Adding glucose, NaNO3, NH4Cl, and KH2PO4 to the co-culture raised the algicidal activity of the L23 against green algae by 5%-50%. Conversely, a 10%-20% decrease in activity occurred against the target cyanobacteria except M. aeruginosa UTEX LB 2385. These results indicated that the interspecific algicidal activity changes according to the nutritional status, which means that the alga-bacterium interaction will be more complex in the field where the nutritional status changes from time to time.


Assuntos
Aeromonas/fisiologia , Antibiose/fisiologia , Proliferação Nociva de Algas/fisiologia , Aeromonas/classificação , Aeromonas/genética , Anabaena variabilis/fisiologia , Antioxidantes/metabolismo , Chlorella vulgaris/fisiologia , Meios de Cultura , Herbicidas/metabolismo , Lagos/microbiologia , Microcystis/fisiologia , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Scenedesmus/fisiologia
18.
Bull Environ Contam Toxicol ; 102(6): 795-801, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30927019

RESUMO

Toxicity of three textile dyes-Optilan yellow, Drimarene blue and Lanasyn brown, was evaluated in a green alga Chlorella vulgaris. The unialgal populations of the alga showed a concentration-dependent decrease in specific growth rate and pigments after exposure to graded concentrations of above dyes. The elemental profile (C, H, N, S) of the treated and untreated cells showed a change which was evident from a significant decrease in the quantity of elements after exposure to the dyes. The observations provide convincing evidence that the textile dyes inhibited the growth, pigment and elemental composition of the algal cells. The findings of the present investigation will contribute to gaining a better understanding of the impacts of textile dyes on ecologically important aquatic organisms.


Assuntos
Chlorella vulgaris/efeitos dos fármacos , Corantes/toxicidade , Fotossíntese/efeitos dos fármacos , Têxteis , Poluentes Químicos da Água/toxicidade , Chlorella vulgaris/fisiologia , Água Doce , Proteínas/metabolismo
19.
Planta ; 249(4): 1189-1205, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30603788

RESUMO

MAIN CONCLUSION: Photoacclimation to variable light and photoperiod regimes in C. vulgaris represents a complex interplay between "biogenic" phytochrome-mediated sensing and "operational" redox sensing signaling pathways. Chlorella vulgaris Beijerinck UTEX 265 exhibits a yellow-green phenotype when grown under high light (HL) in contrast to a dark green phenotype when grown at low light (LL). The redox state of the photosynthetic electron transport chain (PETC) as estimated by excitation pressure has been proposed to govern this phenotypic response. We hypothesized that if the redox state of the PETC was the sole regulator of the HL phenotype, C. vulgaris should photoacclimate in response to the steady-state excitation pressure during the light period regardless of the length of the photoperiod. As expected, LL-grown cells exhibited a dark green phenotype, low excitation pressure (1 - qP = 0.22 ± 0.02), high chlorophyll (Chl) content (375 ± 77 fg Chl/cell), low Chl a/b ratio (2.97 ± 0.18) as well as high photosynthetic efficiency and photosynthetic capacity regardless of the photoperiod. In contrast, C. vulgaris grown under continuous HL developed a yellow-green phenotype characterized by high excitation pressure (1 - qP = 0.68 ± 0.01), a relatively low Chl content (180 ± 53 fg Chl/cell), high Chl a/b ratio (6.36 ± 0.54) with concomitantly reduced light-harvesting polypeptide abundance, as well as low photosynthetic capacity and efficiency measured on a per cell basis. Although cells grown under HL and an 18 h photoperiod developed a typical yellow-green phenotype, cells grown at HL but a 12 h photoperiod exhibited a dark green phenotype comparable to LL-grown cells despite exhibiting growth under high excitation pressure (1 - qP = 0.80 ± 0.04). The apparent uncoupling of excitation pressure and phenotype in HL-grown cells and a 12 h photoperiod indicates that chloroplast redox status cannot be the sole regulator of photoacclimation in C. vulgaris. We conclude that photoacclimation in C. vulgaris to HL is dependent upon growth history and reflects a complex interaction of endogenous systems that sense changes in photoperiod as well as photosynthetic redox balance.


Assuntos
Chlorella vulgaris/metabolismo , Cloroplastos/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/fisiologia , Chlorella vulgaris/efeitos da radiação , Clorofila A/metabolismo , Cloroplastos/fisiologia , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Luz , Oxirredução , Fenótipo , Fotoperíodo , Fotossíntese/efeitos da radiação
20.
Environ Sci Pollut Res Int ; 26(6): 6182-6190, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30617897

RESUMO

A photosynthetic algal (Chlorella vulgaris) microbial fuel cell (PAMFC) with double chambers was adopted for power production and removal of carbon and nitrogen in swine sewerage that could provide nutrients for the growth of C. vulgaris. C. vulgaris was expected to utilize carbon dioxide (CO2) delivered from the anode chamber and generate oxygen as an electron acceptor by photosynthesis. PAMFC presented a maximum voltage output of 0.747 V and a maximum power density of 3720 mW/m3 at 240 h, much higher than that of the standalone MFC. 85.6%, 70.2%, and 93.9% removal of ammonia nitrogen, total nitrogen (TN), and total organic carbon (TOC), respectively, were obtained in the anode chamber of the PAMFC system, while the corresponding removal in MFC was 83.1%, 56.0%, and 87.2%, respectively. PAMFC also presented a much higher removal of ammonia nitrogen (68.7%) in the cathode chamber than MFC (47.5%). The results indicated the superiority of the PAMFC device for carbon and nitrogen removal.


Assuntos
Fontes de Energia Bioelétrica , Chlorella vulgaris/fisiologia , Eliminação de Resíduos Líquidos/métodos , Amônia/metabolismo , Animais , Carbono/metabolismo , Eletrodos , Esterco , Nitrogênio/metabolismo , Oxigênio/metabolismo , Fotossíntese , Suínos , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...